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A B S T R A C T   

Concomitant with the explosive growth in the number of artificial intelligence Internet of Things 
(AIoT) devices, a large amount of data is being constantly generated. Further, cloud computing 
has become increasingly popular for AIoT edge devices. However, challenges such as bandwidth 
limitations and connection environment constraints exist. To overcome these challenges, 
distributing computing resources on AIoT gateways or small cloud servers is necessary. In this 
study, the fog edge computing IoT (FECIoT) architecture was expanded by adding a new hard
ware layer. Specifically, a 3.5-tier edge computing AIoT (ECAIoT) architecture was developed 
based on microservices, containers, hardware artificial intelligence engine technology, and an IoT 
protocol. Experimental results indicate that the request-based load balancing architecture of 
ECAIoT results in better performance in terms of response time and processing speed. Further
more. the architecture allows the system to scale flexibly to support different scenarios and de
mand loads.   

1. Introduction 

Since its introduction in 2005 and over 10 years of development, cloud technology has been adopted across various sectors. 
Residential cloud backup surveillance cameras and different types of cloud technology are becoming integrated into our daily life. In 
particular, current Internet services offer various applications based on the cloud environment. Furthermore, cloud services, such as 
Facebook, Google, Netflix, and virtual private networks, are affecting and changing our current lifestyles. 

The concept of the Internet of Things (IoT) was introduced into the supply chain management system in 1999. Since then, it has 
continued to develop in various fields, such as home care, security surveillance, and automotive electronics, and has become one of the 
driving forces for the growth of science and technology. 

Numerous sensors are interconnected via the IoT or pass large amounts of data to servers [1]. Data generated by the large-scale IoT 
are sent to the cloud for processing, which requires time and a stable network topology. For time-sensitive IoT applications or IoT 
devices that are often offline, cloud computing cannot or has limited ability to provide relevant services. Edge computing (EC) is a new 
technology developed to overcome this limitation. In addition to processing data at the network edge, EC can send limited traffic to the 
cloud center to save bandwidth and reduce network latency. For example, the recent COVID-19 pandemic has forced people to stay 
home, increasing network traffic, latency, and cloud server loading. By implementing EC technology, cloud server loads can be off
loaded to local servers. EC technology can also provide more computing resources for IoT devices. Fig. 1 illustrates the three-tier 
architecture of EC [1, 2], which consists of IoT devices, EC servers, and cloud servers, each performing different functions. 

Artificial intelligence IoT (AIoT) [3, 4] is a novel technology that integrates artificial intelligence (AI) with existing IoT 
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architectures, allowing the IoT network to use AI techniques to process data from IoT devices. If AI is deployed on EC servers, its 
analysis capabilities can be utilized to convert massive IoT data into manageable units that can be sent to the cloud servers. Addi
tionally, it can make preliminary decisions on EC to reduce the latency time and bandwidth required for transfer to the cloud servers. 
Research indicates that the market size of IoT embedded AI software will reach 700 million U.S. dollars by 2025. Moreover, the 
combination of AI and IoT will accelerate the digitalization of various fields because the decision-making power of AI considerably 
affects IoT, and IoT in turn provides the cornerstones of AI through IoT device-generated large data. However, AI involves high 
computing resource consumption, and EC is a resource-constrained environment. Gathering all computing resources at the edge en
ables the network to provide flexible on-demand services or additional computing resources to cover urgent computing requirements. 

To overcome the challenges outlined above, we designed a new AIoT architecture based on an embedded hardware architecture 
and explored the potential of this AIoT architecture. The AIoT architecture can meet the demanding performance requirements of IoT 
to provide, calculate, and analyze sensor data. However, the inherent problem of IoT is that it is an embedded architecture, and it is 
often faced with the need to increase and strengthen computing capabilities through the special architecture of an IoT gateway. Among 
the methods proposed to alleviate these problems, Chen et al. [5] developed a multi-embedded microcontroller (MCU) to provide 
Industrial IoT (IIoT) efficiency for data transmission and increase gateway expansibility. However, under the AIoT architecture, 
scalability will be a major issue, especially in an EC environment. AIoT involves resource-intensive applications such as AI or image 
processing applications, which will compound the problem if the architecture lacks AI accelerator hardware. An example scenario is an 
application that utilizes a cluster of face recognition surveillance cameras, each equipped with artificial intelligence hardware. If many 
objects suddenly enter the frame of one of the surveillance cameras, that camera could utilize the computing resources of the other 
cameras in the cluster to speed up image processing and face recognition [6]. To solve these problems, an architecture that in
corporates lightweight virtualization and container technologies is necessary. 

Clearly, it is crucial to select flexible, efficient, and automated EC tools to deploy applications in the ECAIoT environment effec
tively. Although various technologies can perform each of the EC functions, these technologies still need to be integrated together to 
meet the special requirements of AIoT applications. Supported AI algorithms must be scalable and flexible as well as lightweight 
because they need to be executed separately by the embedded hardware. Based on the above architectural requirements, this study 
proposes a 3.5-tier edge computing AIoT (ECAIoT) framework, in which the edge computing layer of the traditional three-layer ar
chitecture is coupled with AI hardware to meet the extended requirements of AIoT edge computing. 

The contributions of this study are as follows:  

• An AI accelerated microservices layer is added to the three-layer FECIoT architecture. This enhances it to accommodate effectively 
ECAIoT applications.  

• A new software and hardware ECAIoT architecture is developed based on embedded hardware and integrated microservices 
technology to make it scalable and flexible.  

• A software communication architecture is designed with a request-based load balancing mechanism. The mechanism enables IoT 
devices to send multiple different jobs simultaneously over the same connection, which can be delivered to different deep learning 
accelerator hardware. Consequently, hardware resources are utilized more efficiently in the ECAIoT environment and less 
computing resource is required. 

Fig. 1. Schematic representation of the three-tier EC architecture  
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• A face recognition system was designed and implemented to evaluate the feasibility of the proposed software and hardware ar
chitecture. The results verified that architecture can satisfy the original design goal.  

• The architecture also satisfies the requirements of an AIoT Gateway. It solves some of the problems often encountered in AIoT 
environments. For example, it can create embedded network topologies independently and can support the cloud architecture. The 
same AIoT environment can be scaled with low latency as it employs a highly effective load balancing system, and can quickly 
develop and deploy system architectures in an embedded environment. 

The remainder of this paper is organized as follows. Section II presents the basic concepts of ECAIoT. Section III describes the 
architecture in detail. Section IV outlines the experiments conducted and analyzes the results obtained. Finally, Section V presents 
concluding remarks. 

2. AIoT and edge computing concepts 

2.1. Edge computing 

The concept of EC appeared in the late 1990s when Akamai introduced the content delivery network (CDN) to improve website 
performance and response speed. Akamai deployed server nodes globally that stored locally cached versions of websites. Conse
quently, CDNs improved user experience, reduced the bandwidth between users and cloud servers, and saved computing resources [7]. 
Recently, the telecommunications industry has become interested in EC. In 2014, the European Telecommunications Standards 
Institute (ETSI) established an industry specification group to standardize multi-access edge computing. Since then, telecommuni
cations and academic industries have begun to study the future possibilities of EC technologies [8]. 

When EC is coupled with the IoT environment, it enables the distribution of computing resources between IoT devices and cloud 
servers [9]. Listed below are examples of how the current IoT could benefit from EC.  

• The amount of data generated may exceed the cloud computing and transmission capacities. For example, airplanes generate large 
amounts of data when flying, but the available satellite bandwidth is limited. EC can be used to process and analyze the data quickly 
to provide real-time flight information and help control the flight computer. Subsequently, the analyzed data required can be 
uploaded via the satellite uplink when resources become available.  

• It may not be possible to connect to a cloud server at any time. IoT devices have limited connection capabilities and are located in 
environments with different conditions, e.g., networks or areas with limited power, bandwidth, and resources. Therefore, an IoT 
gateway close to the IoT devices is required to assist in storing and processing data.  

• EC can be utilized for data pre-processing. Large amounts of device data can be processed before being uploaded at the edge of the 
network. For example, a surveillance camera can firstly analyze an image via EC and backup a video or perform a face recognition 
function when an object is detected. 

Overall, EC can save cloud computing bandwidth, reduce response time, and, in some cases, limit energy consumption. Addi
tionally, it is often called the last mile of cloud network topology because it can extend cloud services from a central office to a remote 
location [1]. 

EC technology differs from client–server architectures. The applicable scenarios for EC are limited to the edge of the cloud 
computing server. If the system is not connected to the cloud server, the EC topology cannot be compared with that of a local 
computing scenario. EC offers a specific micro-cloud computing environment, but the computing energy and power consumption differ 
from those of cloud computing. The potential application scenarios for EC are as follows: 

1 Rural territories: Many remote small islands and villages rely on expensive satellite network connections for sufficient commu
nication. Therefore, rural territories are suitable for the deployment of EC technologies.  

2 Mine pits: Deep underground mines have limited external connection capabilities because communication cables are often 
disconnected and cable instability or routing produces high network latency. EC can significantly increase the reliability of IoT 
networks in mine pits. 

3 Factories, seaports, and airports: These areas require high network reliability and proximity to prevent hacker attacks. An inde
pendent network can ensure high security and low network latency. 

Because EC can meet the needs of the IoT device environment, it can 1) provide local computing resources, 2) allow IoT devices to 
offload computing jobs at the edge, and 3) offer new niches for small cloud service providers [10]. 

2.2. Fusion of IoT, AI, and EC 

Mining reliable data is a central topic within the IoT research field. AI is considered to be a new research direction as regards data 
collection methods [11]. 

AI is increasingly being introduced into IoT solutions for IoT applications and systems. Many IoT applications generate large 
amounts of data, and AI may achieve good data processing results. In specific fields, such as image processing, AI often performs better 
than traditional algorithms and takes less time to develop. Therefore, because of the limited energy and computing capabilities of IoT 
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devices, research is still being conducted on the execution of AI on IoT devices [4]. 
EC can be employed to move computing resources from a centralized cloud server to edge nodes near the user end, bringing major 

improvements to the existing cloud computing [12]:  

• Edge nodes can pre-process large amounts of data and then send them to the cloud server.  
• The resources of the entire cloud can be optimized through the computing power of the edge nodes. 

EC has the potential to improve the shortcomings of cloud computing architectures in IoT significantly. Moving computer resources 
from a centralized cloud architecture to the edge can reduce the number of routers and transmission latency [13]. For example, Zhou 
et al. used EC and AI to handle imaging problems [14]. They first processed raw data in the form of images and video clips at edge 
nodes. Then, after preliminary filtering, data authentication, and correlation identification, only the required data were transmitted to 
the sensing platform. This approach significantly reduced the total data volume transmitted to the sensor server platform. 

There are many applications in which EC can be combined with AI, such as hydroponic greenhouses, electronic microgrids, and 
multi-camera surveillance systems in manufacturing. This technique can reduce the data generated by cameras by 75%, thereby 
reducing the pressure of data processing in the cloud and increasing the timeliness. Zhou et al. also implemented automatic machine 
learning (AutoML) on Kubernetes [15], and Chang et al. realized an RSA encryption algorithm for offloading digital signature gen
eration to a GPU-accelerated IoT gateway [16]. 

2.3. Virtualization and container technology 

In hardware-level virtualization, a virtual environment, called the guest machine, is simulated on a physical computer, called the 
host machine. The virtual system is allowed to create several operating systems (OSs) on the guest machine, which are independent 
and, by default, cannot easily access each other. The communication and hardware sharing between OSs is realized through the top- 
level computer. Container technology is based on OS-level virtualization and refers to an OS paradigm in which the kernel allows the 
existence of multiple isolated user space instances. For instance, FreeBSD Jail, Unix Chroot, and Linux Docker are based on container 
technology. Specifically, they run under the same core and OS, but the processes and directories are independent. 

Many researchers have compared the performance of virtual machines and containers. In general, the execution time, CPU, 
memory usage, and power consumption of containers are better than those of virtual machines. However, the security and versatility of 
virtual machines are better than those of containers. For example, a virtual machine can run Linux and FreeBSD simultaneously, but a 
container can only execute one of them because containers can only run different OSs in the same kernel (e.g., Debian, Red Hat, 
Ubuntu). Table 1 compares containers and virtual machines. Both technologies have advantages and disadvantages and are suitable for 
different applications. 

2.4. Microservice architecture 

Microservices are small applications that can be independently deployed, extended, and tested. The advantage of the microservices 
architecture is that each small service is designed and developed using different technologies and plans. This approach facilitates 
increased flexibility during the development stage because the malfunctioning of one microservice does not affect the others. 

Recently, microservices have become popular because they are easy to scale up or down and even discard when deploying ap
plications to the cloud. Additionally, deploying multiple small programs is much simpler than deploying a single large application (e. 
g., monolithic architecture). Each microservice is connected with an independent database and uses an application programming 
interface (API) for communication. Such convenience is necessary for large websites on the cloud. 

2.5. Microservice architecture 

The lightweight characteristics of microservices are suitable for application to embedded IoT environments, lightweight and 
scalable applications on the cloud, or in EC [17]. The features and advantages of microservices after adding them to the IoT envi
ronment are as follows [18]: 

Table 1 
Virtualization versus containers.  

Technology Containers Virtualization 

OS Shared with host OS Independent of host OS 
CPU architecture Same as host OS Can run on different CPU architectures 
Portability Can only run on the same OS/architecture Can run on different OSs/architectures 
Security All applications run on the same kernel; security depends on the 

host OS 
High security; each OS runs individually; difficult to access guest OS 
from host OS 

Hardware access Can access hardware via host driver Needs VM; OS and hardware support input/output virtualization 
Memory 

requirement 
Low; containers can access host devices via device files High; each guest OS has its own memory requirement 

File sharing Low; different containers can share files High; each virtual machine has its own file system  
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1 Provision of high-availability and system backup services: The relatively harsh IoT environment requires such services, and re
searchers can focus on important jobs like systems monitoring or analysis or designing retransmission architectures.  

2 Fast update deployment/zero downtime: A microservice can exclusively update important application components in an unstable 
network environment. It can allow the system to wait until the application is downloaded, after which it is updated. It can also 
update part of an application or the entire application all at once, while keeping the service online.  

3 Container: IoT environments have different applications that may need different libraries and setup. Containers can separate them 
and run applications with different environments and libraries. They also provide the ability to deploy applications independently.  

4 Suitable for technology diversity: IoT solutions come from different hardware and software vendors. Microservices can use 
container technology to deploy applications on different libraries for different technologies.  

5 Machine to Machine Communication: Both microservices and IoT systems need machine to machine communication. Thus, IoT 
applications can usually be easily deployed to the microservices architecture without redesigning the communication software. 

Microservices are suitable for all computing resources and run heavy loading programs. Studies have been conducted on per
forming deep computing learning on microservices. Tsai et al. integrated distributed application analysis on Kubernetes [19]. Boltunov 
et al. used embedded AI hardware and Kubernetes to build a MicroGrid managing system, which used GlusterFS to save distributed 
data and implement power load forecasting algorithm on it [20]. 

3. 3.5-Tier ECAIoT architecture 

Lin et al. proposed a three-tier architecture that integrates fog and edge computing into an IoT network, called FECIoT [1]. Their 
three-tier architecture consists of the following: 

1. Perception Layer: The lowest layer of the IoT architecture is the sensor layer. 
2. Network Layer: The middle layer of the IoT architecture collects data from the perception layer and sends them to the IoT center 
for processing. 
3. Application Layer: The highest layer of the IoT architecture receives data from the network center and provides the services 
needed to process the data. 

Lin et al. added fourth and fifth layers to the FECIoT architecture, where the service layer is located between the application and 
network layers, and introduced several concepts. Their architecture involves 1) a sensing layer, 2) a network layer, 3) a service layer, 4) 
an application layer, and optionally 5) a business layer above the application layer. As the name implies, the service layer provides a 
variety of services. The business layer extracts from the application to provide more complex services and provides full management, 
operation, and deployment for all IoT systems. However, as these layers cannot describe how to implement AIoT using EC, we 
redesigned the three-layer FECIoT and added hardware support to meet the requirements for AIoT implementation using EC based on 
the original three-layer design (see Fig. 2). 

After adding the AI accelerated microservices layer to the original three layers, we created a 3.5-tier framework, considering that 
the hardware layer does not entirely belong to but assists the application layer. 

The layers and their corresponding functions in our extended 3.5-tier architecture are as follows: 

Fig. 2. Schematic representation of the 3.5-tier ECAIoT architecture.  
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• Application Layer: 

Responsible for human–machine interaction, control, AI model generation, and AI application deployment to AI accelerated 
microservices layer.  

• Network Layer: 

This is the IoT gateway, responsible for bridging different IoT protocols, receiving/processing data from the perception layer and 
communication with the application layer and AI accelerated microservices layer.  

l Perception Layer 

The function of this layer is the same as in the three-tier perception layer, which is the sensor layer.  

l AI Accelerated Microservices Layer 

This layer preprocesses the intermediary data and responds to the perception layer in time. The role of this layer is established by 
the application layer as an intermediary layer between the application and perception layers. Part of the operation and control 
belonging to the application layer is placed on this layer. This is done to enhance the edge computing capabilities of EC, so that it can 
have low latency and the ability to respond quickly to the perception layer. 

From these four layers, we also added four processing activities, which can more clearly show how the 3.5 tier ECAIoT abstraction 
layer architecture processes data:  

l Command: 

The application layer deploys AIoT applications and the AI model.  

l Real-time Data Collection: 

Data are collected from the perception layer and processed. It uses AI accelerator hardware to speed up the processing of data.  

l Monitor/Control: 

After the AI accelerated layer processes data, depending on the requirement, the sensor is notified whether to continue monitoring 
or controlling the device to change parameters (for example, modify the sensor’s monitoring angle).  

l Decision Support: 

The sorted data are sent to the application layer for final decisions, such as variation in the data collected from the sensors, and 
predicting it by the AI model. If the AI accelerated microservices layer cannot handle it or special data, then those data will be sent to 
the application layer to for a final decision or analysis. 

We believe that the 3.5 tier ECAIoT architecture with the addition of AI accelerated microservices layer can better show the ability 
of the ECAIoT architecture and how it processes data. It also shows that this architecture is closer to the perception layer than the 
application layer with faster response times and low latency. 

To verify the feasibility of the proposed architecture, we developed a series of software and hardware combinations that can 
implement the ECAIoT framework. These combinations are introduced in the following sub-sections. 

3.1. System design purpose 

The proposed architecture must meet the following minimum requirements:  

• The EC must be able to build networks and cloud-service-like systems independently without relying on the central cloud services.  
• The AI hardware must be flexible, i.e., the AI hardware must be able to be added, removed, and support a redundant system at any 

time.  
• The AIoT communication protocols need to be lightweight, efficient, and capable of transmitting large amounts of data and 

supporting a wide range of programming languages.  
• Load balancing for the AIoT communication protocols must be implemented to maximize the use of EC resources, i.e., support- 

protocol-based load balancing.  
• Applications must be built using a microservices architecture, which is highly scalable and flexible, and current mainstream 

container technologies must be implemented.  
• The system architecture must use embedded hardware to meet the requirements of EC and AIoT. 
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3.2. Load Balancing 

At the start of our new ECAIoT architecture research, we tried to use Docker Swarm (a special mode of the Docker service that 
allows containers to be scaled across multiple Docker daemons) as our ECAIoT architecture. However, Docker Swarm uses DNS as the 
connection load balancer, which will concentrate connections on one or more machines. This results in some servers not getting any 
jobs from the IoT devices. Thus, we encountered a system architecture problem. In a connection-based load balancing mechanism, 
multiple IoT devices may be connected to the same hardware, while others may be kept on standby, resulting in inefficient use of 
hardware resources. 

The concentrating of processing resources on special machines led us to rethink our architecture. Specifically, we felt that we 
needed a different load balancer architecture to avoid wasting computing resources. The following are possible solutions to this 
problem:  

• Let IoT devices connect to the application directly 

This can achieve our purpose, and it is very easy to implement. However, when clients and servers are added in this system, server 
information must be re-acquired and connections will grow exponentially. Direct connection also has a security issue.  

• One connection per request 

This will incur numerous connections and it will increase latency and consume significant amounts of resources. Furthermore, it 
has a security issue.  

• Protocol-based load balancer 

This system can analyze the protocol, extract every request it contains, and send them to each hardware equally. This architecture 
requires an extra proxy, on which it can run a load balancer. The proxy can also be a good firewall. This is a more secure solution. 
However, this solution will consume more computing resources to achieve these functions. 

Obviously, the best idea choice is a protocol-based load balancer. Our design uses an HTTP/2-based IoT protocol, in which multiple 
requests can be made to the same connection. The protocol-based load balancer can be used to distribute connections to different 
hardware, implying that the load balancing mechanism must be analyzed and processed by the protocol. However, protocol-based load 
balancing is difficult to implement. Fig. 3 illustrates the difference between connection-based and protocol-based load balancing. In 
connection-based load balancing, different requests are sent to the same host. In contrast, requests are referred to the protocol layer 
and sent to different hosts in protocol-based load balancing. 

Fig. 3. Schematic representations of (a) connection-based load balancing and (b) protocol-based load balancing.  

C.-H. Chen and C.-T. Liu                                                                                                                                                                                            



www.manaraa.com

Computers and Electrical Engineering 93 (2021) 107227

8

3.3. System design 

The actual design of ECAIoT is a three-layer architecture [21, 22]. System pre-planning is necessary for easy implementation on the 
actual architecture. Selecting an appropriate software system is challenging owing to the wide variety of available technologies. 
However, before development, it is still necessary to hierarchize and modularize the system characteristics. For the proposed system 
architecture, we adopted the Machine Intelligence and Automation Technology (MIAT) Lab system design methodology, which is 
derived from the integrated computer-aided manufacturing definition (IDEF)[5]. The system uses a high-level language to hierarchize 
and modularize the system function planning. Then, system design is decomposed into independent modules from the top down. Fig. 4 
presents the preliminary hierarchical structure obtained from using the IDEF0 design concept. 

3.4. Kubernetes 

Kubernetes is an open architecture for automatically deploying, scaling, and managing containers. The concept is derived from the 
Google Borg project, which can support many container tools, such as Docker or LXC/LXD (Linux containers). Although similar tools 
exist (e.g., Docker Swarm), Kubernetes is the most widely used because it enables easy expandability and the use of various com
ponents and documents. The largest augmented reality game in the world, Pokémon GO, uses Kubernetes technology, and the largest 
Kubernetes cluster on Google Compute Engine is associated with this game. 

Kubernetes is a decentralized system consisting of master and worker nodes. The following components are on the master node:  

• etcd: a distributed key value storage system called etcd  
• API server: controller manager  
• System scheduler: coordinates the current data and places the newly created pod on the node that can execute the pod. 

The following components are on the worker node:   

• Kubelet: the main system that communicates with the master node  
• kube-proxy: used to connect with the outside world  
• Pod: a set of containers 

Fig. 5 shows the basic architecture and internal functionality of the Kubernetes cluster. 

Fig. 4. Schematic representation of the IDEF0 hierarchical structure.  
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3.5. gRPC and ProtocolBuf 

gRPC is a high-performance, open-source universal remote process call (RPC) framework. Although IoT has many communication 
protocols (e.g., MQTT, XMPP, CoAP, and AMQP), few protocols are suitable for ECAIoT, considering the original requirements, i.e., 
high-performance, low protocol consumption (uses binary code as the data-transfer format, not a text-based/readable language such as 
xml), and protocol-based load balancing supported by the software. After researching the available protocols, we selected gRPC 
because it met all of the requirements. gRPC is an open-source RPC framework and library developed by Google. It supports many 
programming languages, such as Python, Golang, C++, and C#. gRPC uses ProtocolBuf as the RPC interface description language, 
which enables users to generate interface code templates in multiple programming languages. These codes can exist alone or be mixed 
with other protocols or frameworks. They are generally used to replace data exchange languages, such as XML or JSON. 

The gRPC library provides a gRPC server, which is called a gRPC stub on the client. It supports multiplexed data transmission and is 
an efficient and lightweight RPC protocol. gRPC supports authentication, bidirectional streaming, stream control, and super features 
by default and provides an efficient client with many possible applications, e.g., communication between services in a microservices 
architecture and connection of an application or browser in a mobile phone to the back end. gRPC can also be applied to high- 
performance IoT environments. 

Further, gRPC uses HTTP/2 as a low-level communication protocol. HTTP/2 is suitable and compatible with most current envi
ronments. One major difference between HTTP/2 and 1.1 is the multiple request ability of the former, i.e., in the case of multiple 
requests, HTTP/2 will combine multiple transmission control protocol (TCP) streams into a single TCP connection without requiring a 
new connection to be built for each request. If data are requested continuously, HTTP/2 can save valuable connection establishment 
time [23]. Fig. 6 illustrates the gRPC protocol stack. 

3.6. Linkerd2 

Linkerd is a service mesh framework on Kubernetes. It mainly solves network and security problems caused by the microservices 
architecture or containerization. It provides runtime debugging, observability, reliability, and security without requiring the code or 
pod to be changed. 

Linkerd2 is implemented by injecting a reverse-proxy program into Kubernetes pods. All network traffic into and out of the pods 
passes through this reverse-proxy program to control traffic. Linkerd2 has a control plane and a data plane. The control plane is 
responsible for collecting data, providing an API, and controlling the data plane. The data plane is a lightweight agent written in RUST. 

We used Linkerd2 as the main component of the HTTP/2 and gRPC load balancer because, as mentioned earlier, a protocol-based 
load balancing architecture was necessary. Linkerd2 can be employed to analyze the gRPC protocol and run load balancing on it. 
However, to become integrated into the three-tier ECAIoT architecture, it requires a proxy as an intermediary layer, because pods are 
scattered on different machines, and when worker nodes receive a connection, they cannot redirect it to other worker nodes, but can 
only forward it. Given the scope of this study, we did not consider connection forwarding because it is not considered load balancing. 

Fig. 5. Schematic representation of the Kubernetes architecture.  
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One option would be to perform load balancing on the client side, but the system cannot know beforehand how clients use the 
hardware resources. Therefore, the best strategy is to add a proxy between the client and the protocol-based load balancer. This proxy 
increases latency but also assists in transferring requests to the cloud when necessary. Fig. 7 is a schematic representation of the 
proxy–cloud connection process. 

Linkerd2 offers another advantage in that it uses an exponentially weighted moving average (EWMA) as its load-balancing al
gorithm. As such, it will select a server offering a high level of performance according to recently acquired data, unlike the traditional 
round-robin (RR) algorithm whereby requests are simply sent to the next server. The EWMA algorithm thus improves server per
formance and usage. Since latency often occurs in AI applications and failure may occur in an AIoT environment, EWMA has a higher 
success rate and can also realize a higher level of performance than other algorithms like RR or last load. It can greatly improve overall 
system performance in an ECAoT environment. 

4. System validation 

4.1. 3.5-Tier ECAIoT hardware architecture 

As a last step, we designed the upper-level system architecture by selecting a solution and investigating and developing the selected 
system. The following introduces the specifications and technologies used in this architecture from both the hardware and software 
perspectives. 

Hardware: 
In ECAIoT, embedded hardware is a priority. The selected hardware platforms included the following: 

1. Raspberry Pi 4: 

Raspberry Pi 4 allows for Kubernetes node provisioning, is powered by an ARM64 architecture with a quad-core Cortex-A72 
(ARMv8) 64-bit SoC@1.5 GHz, and has 4 GB of RAM. It has enough computing resources to support EC microservice nodes. 

2. Nvidia Jetson TX2: 

Fig. 6. gRPC protocol stack.  

Fig. 7. Proxy server connecting to the cloud.  
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As an AI hardware worker node, we used Nvidia Jetson TX2. It is powered by a quad-core 2.0 GHz 64-bit ARMv8 A57 processor, a 
dual-core 2.0 GHz superscalar ARMv8 Denver processor, and an integrated Pascal GPU 1.3 GHz with 256 cores and 8 GB RAM. The 
GPU can provide up to 1.33 TFLOps AI engine performance, and a Huawei P20 Pro can provide 1.92 TFLOPs AI peak performance. 
Further, the P20 Pro has been used in AI for photo scene recognition [24]. As a cellphone is a small embedded AI environment, the 
CPU/GPU hardware can provide sufficient computing power for AI and running the Kubernetes work node. In addition, the Jetson TX2 
only consumes 7.5 W of power (maximum 15 W), which enables it to be used as an embedded AI platform or edge IoT scene appli
cations by changing its power-efficiency modes [25]. 

Both types of hardware are embedded software architectures and can execute the AIoT/EC architecture, which can be used to verify 
the ECAIoT architecture. 

Software:  

1 Container infrastructure: 

Kubernetes, the most popular container technology, is mainly used to help manage containers and build services, such as appli
cation allocators or AI algorithms.  

1 Communication protocol: 

gRPC is a high-efficiency and low-bandwidth protocol that supports various programming languages. It is based on protocol buffers 
and a universal remote procedure call (RPC) framework.  

1 Proxy server: 

The NGINX server is used for the gRPC proxy, and the NGINX HTTP server is one of most popular HTTP and reverse proxies in the 
world. It is designed to be a high-performance and low resource consumption HTTP server. In a Netcraft worldwide survey, it took 
first place with a percentage of 32.69%.  

1 Protocol-based load balancer: 

Linkerd2 is a service mesh for Kubernetes that can also perform gRPC load balancing.  

1 AI container: 

Fig. 8. Schematic representation of the 3.5-tier container-based ECAIoT architecture.  
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Keras and Python were used to develop the AI containers. Python is the main development language in current AI operations. Keras 
is a popular AI framework that can connect various AI computing engines. TensorFlow was used as the underlying AI layer. 

The abovementioned hardware and software were coupled with the system architecture design presented in Section III.C. Fig. 8 
presents the proposed 3.5-tier container-based ECAIoT architecture with real implementation and planning. 

The following sub-sections introduce the main techniques for implementing this architecture. 

4.2. Hardware environment 

For this study, we used the following hardware.  

1 Two Raspberry Pi 4s: one for the Kubernetes master node and one for the proxy server  
2 Three Nvidia Jetson TX2s: AI hardware, Kubernetes worker node, Max-P ARM power-consumption mode (default)  
3 An ASUS VC65 i5×86_64: IoT devices client that can send simultaneous connections/requests 

4.3. Experimental evaluation 

Firstly, we measured the number of clients and the response speed. The AI model used for testing was the Keras VGG16 [26] . 
VGG16 is a popular model, but the Keras pre-training model is too large to run on a Jetson TX; therefore, the model was slightly 
modified to fit the embedded environment. Kaggle Dogs vs Cats supplied the testing images. The parameters were as follows: loss 
value: 0.0017, accuracy: 0.9995, verification loss value: 0.191, and verification accuracy: 0.9640. One to three hardware devices were 
tested. The server returned the analysis results and timestamp to the client. 

Remote login was used to execute the test program and calculate the number of predicted images per second and prediction time 
per image in milliseconds. When collecting data, the data for the first 20s is discarded, and an average will be obtained by testing for ≥
40s, to attain a stable state earlier and thus obtain more accurate data. 

We also measured the approximate power consumption of the system for reference: this system has two Raspberry pi 4 units and 
three Nvidia Jetson TX2 units, and the test results are shown in Table 2. 

System standby means that no test is running yet, just the system with the default applications. System on full-operation means that 
8 clients are run on the x86 platform (the client’s power consumption isn’t included), and 3 servers on 3 Nvidia Jetson TX2s. Power 
meters were used to measure the power consumption of the whole system, the Nvidia Jetson TX2, the Raspberry Pi 4 on 110V side, and 
USB power of the Raspberry Pi 4 on the USB side. The measurements were made several times and an average result was calculated. We 
observed an approximate deviation of 3% from the power meters when on system standby and an approximate deviation of 15% when 
in full-operation. 

When the system is under full-operation, the power meter shows that the power usage varies greatly, and one cannot simply 
summarize the Raspberry Pi 4 and Nvidia Jetson TX2 power consumption as whole system power consumption due to the deviations 
during full-operation (Fig. 9) 

4.4. Protocol-based load balancing 

Firstly, we confirmed that the program could correctly allocate each analysis request made by the client to each AI hardware. 
Fig. 10(a) shows the status of a single client request. RPS denotes the number of requests per second, and in P99 and P95, P denotes 
“percentile” and the subsequent number is the relevant percentile value, e.g., P99 means 99th percentile, corresponding to the slowest 
1% of average request delay times. In the center box of Fig. 10(a), RPS stands for requests per second. The proxy processes 7.88 re
quests/s. The three RPS numbers shown in the boxes on the right of Fig. 10(a) indicate how many requests that server has processed; It 
can be seen that each piece of AI hardware has allocated resources to assist with predicting the image requirements. The third server 
tends to have fewer resources, but the figure is not always low, and is always changing. Although the average loading is not balanced, 
each piece of AI hardware received requests, which means that the purpose of the original system design has been met and the 
connection-based load balancing problem is solved such that there is no AI job request that concentrates on one or several servers so 
that the system resources can be better utilized. Fig. 10(b) shows the simulation of multiple IoT clients. At this point in time, requests 
from clients exceed the maximum capacity of three servers. At this time, it can be seen that the servers are at the limits of their capacity. 
As such, there are no server resources available anymore, which also solves the problem of connection-based load balancing. 

Table 2 
System power consumption.  

Measurement Item System standby System on full-operation 

Raspberry Pi 4 3.5W (110V side)3W(USB side) 3.7W (110v side)3.2W(USB side) 
Nvidia Jetson TX2 3W 12W 
Whole system 16W 45W  
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Fig. 9. depicts the system validation environment.  

Fig. 10. Screenshots of the client request status for (a) a single client and (b) multiple clients.  

Fig. 11. Performance test results: (a) analyzed images per second and (b) process image speed in milliseconds  
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4.5. Architecture performance test 

Performance tests were conducted for one to eight IoT device client(s) and one to three piece(s) of AI hardware. The purpose of this 
experiment was to determine whether by expanding the AI hardware to reduce the operation delay at heavy loading it could provide 
high-efficiency calculations in the ECAIoT environment. Fig. 11 shows the test results, where the pieces of AI hardware are denoted 
GPU*1(one GPU device), GPU*2(two GPU devices), and GPU*3(three GPU devices). The method used to calculate the predicted 
number of images/s involves having the computing machine process several images. If there are several machines, the processing 
results are totaled. The image processing speed is calculated by calculating the average time that elapses from the sending of an image 
to the receiving of that image within a given block of time. The method used to calculate the image processing speed involves 
determining the difference between the send data time to the receive data time, then dividing by the elapsed time to get the expected 
image processing speed. 

Fig. 11(a) indicates that each piece of AI hardware could process approximately 8 AI requests per second. As the load on the AI 
hardware side increases, the number of requests that can be processed also increases. Fig. 11(b) shows the response time from when the 
client sends the image to when the client receives the image. When one piece of AI hardware receives many client requests, the image 
processing time increases significantly. In the same situation where there are eight AIoT clients transmitting data simultaneously, 
when three AI hardware provide computing power at the same time, the process image speed can be maintained at 240 ms. If the 
image-processing speed is calculated by determining the average time required to obtain the test result shown in Fig. 11(b), we can see 
that the image processing time for one client is the same, but among the eight clients, the image processing time of one server is very 
high, so we measure image prediction time from start to the end on the server to enable an analysis of the system. 

The test results are shown in Fig. 12. It can be seen that, if only one client sends a request, the image prediction time is around 99 
ms, regardless of the number of servers, and will always be the same. This means that, in this system, even it still has a margin, the 
fastest processing speed for a single thread is 99 ms. This behavior, caused by the python gRPC library, only supports synchronous 
transfer. It cannot send multiple requests simultaneously. Thus, multiple clients can also send more requests to the server at any one 
time. When the number of clients is increased to 2, the best prediction performance is obtained with a single server. Given this result, 
we can conclude that, with an increase in the number of clients with a similar prediction time, the image processing time will increase 
because the request queue is longer, such that more time is needed for dequeuing. When there are multiple servers, the prediction time 
curve is better, and thus the response time is also better. This implies that hardware with multiple GPUs will produce better results, in 
that this load-balancer algorithm uses EWMA as its load balancing algorithm. It will thus automatically send a request to the fastest 
server, so that this system processes/predicts images more effectively. 

These test results were in line with our expectations; by increasing the number of servers, coupled with the characteristics of EWMA 
load balancing, priority is given to the sending of requests to faster servers, such that the AI hardware can provide more computing 
power. With an increase in the computing power, the system’s latency is reduced. 

This result is a good reference for ECAIoT environments that need to maintain low latency. Furthermore, it indicates that we 
successfully extended this architecture to more severe IoT clients, while maintaining a certain processing latency, which is in line with 
our goal. 

4.6. Pre-training model performance test 

Because this is an ECAIoT environment, not a common PC environment, for embedded systems we need a reference value for future 
model selection. Sometimes a more powerful or less memory-efficient model is selected in the embedded system. Herein, we used Keras 
pre-trained models, which can be used for future reference on the same performance comparison base. Considering the computing 
power and memory capacity of this ECAIoT environment, we selected some models that can connect 12 AIoT devices concurrently 
without problems. The following models were selected: InceptionV3, MobileNetV2, and NASNetMobile. ResNet152V2 was selected as 
the maximum size model that can run on Jetson TX2. The image files were preset to dimensions of 224×224. 

Fig. 13 presents the performance speeds of various pre-training models when used on the proposed architecture. InceptionV3 and 
MobileNetV2 have good performances and small response times. They are followed by NASNetMobile, whereas ResNet152v2 is the 
slowest. These test results can be used as a reference for future research; it is not suitable to choose ResNet152V2 as model if processing 
time or speed is essential in a sensitive environment. 

5. Conclusion 

AI hardware has not been scaled to the EC AIoT environment previously. We designed a new concept of 3.5-tier ECAIoT archi
tecture that can clearly show the EC needs for more proximity to the data production side. On the basis of this concept, a new ECAIoT 
architecture based on microservices was developed. The architecture has protocol-based load balancing that can be highly efficient in 
sending requests to multiple pieces of AI hardware evenly and to fulfill the AI hardware resource requirement. Further, we designed a 
cat and dog recognition AI application to prove the feasibility and performance of the ECAIoT architecture. 

The experimental results indicate that implementing more clients improves the performance in terms of the response time and 
processing speed and that the ECAIoT architecture can execute various AIoT/EC architecture applications. In addition, it can expand 
and flexibly scale on the proposed architecture. Compared with the conventional cloud computing architecture, the ECAIoT archi
tecture is more lightweight and lower cost. Further, embedded hardware can be used to build the system. The AIoT/EC environment 
can meet various needs through changes in the hardware architecture. Finally, we demonstrated that an increase in the amount of AI 
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hardware enables more IoT clients to be served and keeps the EC latency low. 
In this study, we developed a feasible container ECAIoT architecture that could be implemented in other studies. In future research, 

we intend to conduct experiments using the ECAIoT architecture, e.g., in the field of agriculture. We intend to deploy an ECAIoT system 
for animal behavior recognition, which can cope with situations such as those presented in this paper, e.g., limited connection and 
resource-constrained environments. 
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